Composite material hollow antiresonant fibers
نویسندگان
چکیده
منابع مشابه
Composite material hollow antiresonant fibers.
We study novel designs of hollow-core antiresonant fibers comprising multiple materials in their core-boundary membrane. We show that these types of fibers still satisfy an antiresonance condition and compare their properties to those of an ideal single-material fiber with an equivalent thickness and refractive index. As a practical consequence of this concept, we discuss the first realization ...
متن کاملHollow antiresonant fibers with low bending loss.
We first use numerical simulations to show that bending losses of hollow antiresonant fibers are a strong function of their geometrical structure. We then demonstrate this by fabricating a hollow antiresonant fiber which presents a bending loss as low as 0.25 dB/turn at a wavelength of 3.35 μm and a bend radius of 2.5 cm. This fiber has a relatively low attenuation (<200 dB/km) over 600 nm mid-...
متن کاملBroadband high birefringence and polarizing hollow core antiresonant fibers.
We systematically study different approaches to introduce high birefringence and high polarization extinction ratio in hollow core antiresonant fibers. Having shown the ineffectiveness of elliptical cores to induce large birefringence in hollow core fibers, we focus on designing and optimizing polarization maintaining Hollow Core Nested Antiresonant Nodeless Fibers (HC-NANF). In a first approac...
متن کاملUV Absorption Spectroscopy in Water-Filled Antiresonant Hollow Core Fibers for Pharmaceutical Detection
Due to a worldwide increased use of pharmaceuticals and, in particular, antibiotics, a growing number of these substance residues now contaminate natural water resources and drinking supplies. This triggers a considerable demand for low-cost, high-sensitivity methods for monitoring water quality. Since many biological substances exhibit strong and characteristic absorption features at wavelengt...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Optics Letters
سال: 2017
ISSN: 0146-9592,1539-4794
DOI: 10.1364/ol.42.002535